Processes determining the marine alkalinity and calcium carbonate saturation state distributions
نویسندگان
چکیده
We introduce a composite tracer for the marine system, Alk, that has a global distribution primarily determined by CaCO3 precipitation and dissolution. Alk ∗ is also affected by riverine alkalinity from dissolved terrestrial carbonate minerals. We estimate that the Arctic receives approximately twice the riverine alkalinity per unit area as the Atlantic, and 8 times that of the other oceans. Riverine inputs broadly elevate Alk in the Arctic surface and particularly near river mouths. Strong net carbonate precipitation results in low Alk in subtropical gyres, especially in the Indian and Atlantic oceans. Upwelling of dissolved CaCO3-rich deep water elevates North Pacific and Southern Ocean Alk. We use the Alk distribution to estimate the variability of the calcite saturation state resulting from CaCO3 cycling and other processes. We show that regional differences in surface calcite saturation state are due primarily to the effect of temperature differences on CO2 solubility and, to a lesser extent, differences in freshwater content and air–sea disequilibria. The variations in net calcium carbonate cycling revealed by Alk play a comparatively minor role in determining the calcium carbonate saturation state.
منابع مشابه
Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?
Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote,...
متن کاملModeling the dissolution of settling CaCO3 in the ocean
concentration, which, on glacial-interglacial timescales, is involved in the regulation of atmospheric pCO2. The saturation state of the ocean with respect to calcium carbonate suggests that any dissolution of calcium carbonate takes place not in the water column but at the seafloor. On the other hand, several authors suggest that a significant part of the dissolution takes place in the upper p...
متن کاملCO2 perturbation experiments: similarities and differences between dissolved inorganic carbon and total alkalinity manipulations
Increasing atmospheric carbon dioxide (CO2) through human activities and invasion of anthropogenic CO2 into the surface ocean alters the seawater carbonate chemistry, increasing CO2 and bicarbonate (HCO − 3 ) at the expense of carbonate ion (CO 3 ) concentrations. This redistribution in the dissolved inorganic carbon (DIC) pool decreases pH and carbonate saturation state (). Several components...
متن کاملDissolution of calcium carbonate: observations and model results in the subpolar North Atlantic
We investigate the significance of in situ dissolution of calcium carbonate above its saturation horizons using observations from the open subpolar North Atlantic [sNA] and to a lesser extent a 3-D biogeochemical model. The sNA is particularly well suited for observation-based detections of in situ, i.e. shallow-depth CaCO3 dissolution [SDCCD] as it is a region of high CaCO3 production, deep Ca...
متن کاملEffect of Carbonate Chemistry Alteration on the Early Embryonic Development of the Pacific Oyster (Crassostrea gigas)
Ocean acidification, due to anthropogenic CO₂ absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances th...
متن کامل